AD-A102 168 STANFORD UNIV CA DEPT OF STATISTICS F/6 12/1 LONG UNIMODAL SUBSEQUENCES: A PROBLEM OF F.R.K. CHUNG.(U)
APR 81 J M STEELE N0014-76-C-0475
NL

TR-301

END
B 81
Onc. F

LONG UNIMODAL SUBSEQUENCES: A PROBLEM OF F.R.K. CHUNG.

Вy

10

J. Michael/Steele

JECHNICAL REPORT, NO. 301

APRIL 2081

Prepared Under Contract
N00014-76-C-0475 (NR-042-267)
For the Office of Naval Research

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes

Avail and/or
Dist
Special

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

DEPARTMENT OF STATISTICS STANFORD UNIVERSITY STANFORD, CALIFORNIA

LONG UNIMODAL SUBSEQUENCES:

A PROBLEM OF F.R.K. CHUNG

By

J. Michael Steele

I. Introduction.

Let p denote a permutation of $\{1,2,\ldots,n\}$ and call $\{a_1 < a_2 < \ldots < a_t\}$ a <u>unimodal</u> subsequence provided there is a j such that

$$p(a_1) < p(a_2) < ... < p(a_j) > p(a_{j+1}) > ... > p(a_t)$$

or

$$p(a_1) > p(a_2) > ... > p(a_j) < p(a_{j+1}) < ... < p(a_t)$$

Let $\ell(n)$ denote the expected length of the longest unimodal subsequence of a randomly permuted subsequence i.e. $\ell(n) = \sum \rho(p)/n!$, where $\rho(p)$ denotes the length of the longest unimodal subsequence of the permutation ρ .

F.R.K. Chung [1] conjectured that

$$\lim_{n\to\infty} \ell(n) / \sqrt{n} = C \text{ exists }.$$

The point of this note is to prove Chung's conjecture and show $C = 2\sqrt{2}$. Actually, Chung's conjecture is slightly more general than this introductory version, and this more general conjecture is obtained by the same proof.

II. Proof of F.R.K. Chung's Conjecture.

Suppose (X_i,Y_i) , $1 \le i < \infty$ are independent and uniformly distributed in $[0,1]^2$. For any A $\subset [0,1]$ let

$$I_{n}(A) = \max\{k: Y_{i_{1}} < Y_{i_{2}} < ... < Y_{i_{k}} \text{ with}$$

$$X_{i_{1}} < X_{i_{2}} < ... < X_{i_{k}}, X_{i_{j}} \in A \text{ and}$$

$$i_{j} \in [1,...,n]\}$$

and

$$D_{n}(A) = \max\{k: Y_{i_{1}} > Y_{i_{2}} > \dots > Y_{i_{k}} \text{ with}$$

$$X_{i_{1}} < X_{i_{2}} < \dots < X_{i_{k}}, X_{i_{j}} \in A \text{ and}$$

$$i_{j} \in [1,2,\dots,n]\}.$$

Next set

$$U_{n} = \max_{0 \le t \le 1} \{ \max(I_{n}([0,t]) + D_{n}([t,1]), D_{n}([0,t]) + I_{n}([t,1]) \} \}.$$

The desired proof will be obtained by applying known results to the random variable $\mathbf{U}_{\mathbf{n}}$. To begin it is easy to check that

$$EU_n = \ell(n)$$
.

Next we note that by the work of Hammersley [2] and Kesten [3] that almost surely and in $\mathbf{L}^{\underline{1}}$ we have the limits

(2.2)
$$\lim_{n \to \infty} I_n(A) / \sqrt{n} = C \sqrt{\lambda(A)} \text{ and } \lim_{n \to \infty} D_n(A) / \sqrt{n} = C \sqrt{\lambda(A)}$$

where $\lambda(A)$ is the Lebesgue measure of $A \subset [0,1]$, and C is a universal constant. The work of Logan and Shepp [9] and Vershik and Kerov [5] established that C = 2.

For any N and $1 \le k \le N$ we define

$$U_n^{N}(k) = \max[I_n(0,k/n) + D_n((k-1)/N,1), D_n(0,k/N) + I_n((k-1))/N,1)]$$

and

$$U_n^N = \max_{1 \le k \le N} U_n^N(k) .$$

Clearly, for all N, $U_n \leq U_n^N$ and by the above mentioned limit results we have

$$\lim_{n\to\infty} U_n^N / \sqrt{n} = 2 \max_{1\le k\le N} (\sqrt{k/N} + \sqrt{(N-k+1)/N}) ,$$

where the limit is almost sure and in L^1 . The arbitrariness of N then shows $\limsup_{n\to\infty} U_n/\sqrt{n} \le 2 \max_{0\le t\le 1} (\sqrt{t}+\sqrt{1-t}) = 2\sqrt{2}$ a.s., so by Fatou's lemma we get $\limsup_{n\to\infty} \ell(n)/\sqrt{n} \le 2\sqrt{2}$.

For the opposite direction note the trivial bound

$$U_n \ge I_n([0,\frac{1}{2}]) + D_n([\frac{1}{2},1])$$

so

$$\lim_{n\to\infty}\inf \ell(n)/\sqrt{n} \geq \lim_{n\to\infty}\inf E(I_n[0,\frac{1}{2}] + D_n[\frac{1}{2},1]) = 2\sqrt{2}$$

which completes the proof.

III. The Generalization.

Instead of allowing the subsequence to make "one turn" as in the unimodal case, one can consider subsequences which make k turns. Explicitly, let $\ell_k(n)$ be the expected length of the longest subsequence S of a random permutation with the following property:

S can be decomposed into k+l segments which are monotone and which alternate between increasing and decreasing.

The method of the preceeding section can be used easily to show

$$\lim_{n \to \infty} \ell_k(n) / \sqrt{n} = 2 \sqrt{k+1} ;$$

all one has to do is define the proper analogue $U_n(k)$ of U_n and argue as before. One should also note that the preceding bounds also prove the almost sure and L^1 convergence of $U_n(k)/\sqrt{n}$ to $2\sqrt{k+1}$.

References

- [1] Chung, F.R.K., On Unimodal Subsequences, Bell Laboratories
 Technical Report (1979).
- [2] Hammersley, J.M., A Few Seedlings of Research, Proc. Sixth Berk. Symp. Math. Stat. and Prob., 1 (1972), 345-394.
- [3] Kesten, H. Comments on J.F.C. Kingman's Subadditive Ergodic Theory,
 Ann. Prob. 1, (1973), 883-889.
- [4] Logan, P.F. and Shepp, L.A., A Variational Problem for Young Tableau, Adv. in Math., 26, (1977), 206-222.
- [5] Vershik, A.M. and Kerov, C.V., Asymptotics of the Plancherel Measure of the Symmetric Group and a Limiting Form for Young Tableau, Dokl. Akad. Nauk U.S.S.R., 233, (1977), 1024-1027.

The state of the s

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 301	10-H102168	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	12 112-0	S. TYPE OF REPORT & PERIOD COVERED
LONG UNIMODAL SUBSEQUENCES: A PROBLEM OF F.R.K. CHUNG		TECHNICAL REPORT
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(s)
J. MICHAEL S	TEELE	N00014-76-C-0475
9. PERFORMING ORGANIZATI	ON NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Sta		NR-042-267
Stanford Universi	ity	MK-042-207
Stanford, CA 9430		
Office Of Naval I		APRIL 2, 1981
	pability Program Code 436	13. NUMBER OF PAGES
Arlington, VA 222	ME & ADDRESS(II different from Controlling Office)	5
14. MONITORING AGENCY NA	ME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMEN	T (of this Report)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report)		
18. SUPPLEMENTARY NOTES		
•	everse side if necessary and identify by block number of sequence, monotone subsequence,	
	stributed random variables.	,
20. APST BACT (Continue on reverse side if necessary and identify by black member)		
Let $\ell(n)$ be the expected length of the longest unimodal		
subsequence of a random permutation. It is proved here that		
l(n)/p converg	This settles a confirmation $v = \frac{\sqrt{2}}{\sqrt{2}}$. This settles a confirmation $v = \frac{\sqrt{2}}{\sqrt{2}}$.	onjecture of
• • • • • • • • • • • • • • • • • • • •	ON 3F 1 NOV 65 IS OBSOLETE	UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dote Briefed)		

The second second second second